Hydrothermal Breakdown of Flexible Metal-Organic Frameworks: A Study by First-Principles Molecular Dynamics.
نویسندگان
چکیده
Flexible metal-organic frameworks, also known as soft porous crystals, have been proposed for a vast number of technological applications, because they respond by large changes in structure and properties to small external stimuli, such as adsorption of guest molecules and changes in temperature or pressure. While this behavior is highly desirable in applications such as sensing and actuation, their extreme flexibility can also be synonymous with decreased stability. In particular, their performance in industrial environments is limited by a lack of stability at elevated temperatures and in the presence of water. Here, we use first-principles molecular dynamics to study the hydrothermal breakdown of soft porous crystals. Focusing on the material MIL-53(Ga), we show that the weak point of the structure is the bond between the metal center and the organic linker and elucidate the mechanism by which water lowers the activation free energy for the breakdown. This allows us to propose strategies for the synthesis of MOFs with increased heat and water stability.
منابع مشابه
Efficient Construction of Free Energy Profiles of Breathing Metal–Organic Frameworks Using Advanced Molecular Dynamics Simulations
In order to reliably predict and understand the breathing behavior of highly flexible metal-organic frameworks from thermodynamic considerations, an accurate estimation of the free energy difference between their different metastable states is a prerequisite. Herein, a variety of free energy estimation methods are thoroughly tested for their ability to construct the free energy profile as a fun...
متن کاملEffects of ultrasound on properties of ni-metal organic framework nanostructures
Objective(s): According to the unique properties of magnetic nanoparticles, Nickel Metal-Organic Frameworks (MOF) was synthesized successfully by ultrasound irradiation. Metal-organic frameworks (MOFs) are organic–inorganic hybrid extended networks that are constructed via covalent linkages between metal ions/metal clusters and organic ligands called a linker. Materials and Methods: The nanopar...
متن کاملFabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors
High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...
متن کاملQuantifying Thermal Disorder in Metal–Organic Frameworks: Lattice Dynamics and Molecular Dynamics Simulations of Hybrid Formate Perovskites
Hybrid organic-inorganic materials are mechanically soft, leading to large thermoelastic effects which can affect properties such as electronic structure and ferroelectric ordering. Here we use a combination of ab initio lattice dynamics and molecular dynamics to study the finite temperature behavior of the hydrazinium and guanidinium formate perovskites, [NH2NH3][Zn(CHO2)3] and [C(NH2)3][Zn(CH...
متن کاملA Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption
Metal-organic frameworks (MOFs) are a new class of microporous materials that possess framework flexibility, large surface areas, "tailor-made" framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry letters
دوره 6 21 شماره
صفحات -
تاریخ انتشار 2015